Yang Hui (, ca. 1238–1298), courtesy name Qianguang (謙光), was a Chinese mathematician and writer during the Song dynasty. Originally, from Qiantang (modern Hangzhou, Zhejiang), Yang worked on , magic circles and the binomial theorem, and is best known for his contribution of presenting Yang Hui's triangle. This triangle was the same as Pascal's triangle, discovered by Yang's predecessor Jia Xian. Yang was also a contemporary of Qin Jiushao, another well-known Chinese mathematician.
Around 1275 AD, Yang finally had two published mathematical books, which were known as the Xùgǔ Zhāijī Suànfǎ (續古摘奇算法) and the Suànfǎ Tōngbiàn Běnmò (算法通變本末, summarily called Yáng Huī Suànfǎ 楊輝算法).Needham, Volume 3, 104. In the former book, Yang wrote of arrangement of natural numbers around concentric and non-concentric circles, known as magic circles and vertical-horizontal of complex combinatorial arrangements known as magic squares, providing rules for their construction.Needham, Volume 3, 59-60. In his writing, he harshly criticized the earlier works of Li Chunfeng and Liu Yi (劉益), the latter of whom were both content with using methods without working out their theoretical origins or principle. Displaying a somewhat modern attitude and approach to mathematics, Yang once said:
In his written work, Yang provided theoretical proof for the proposition that the complements of the which are about the diameter of any given parallelogram are equal to one another. This was the same idea expressed in the Greek mathematician Euclid's (fl. 300 BC) forty-third proposition of his first book, only Yang used the case of a rectangle and gnomon. There were also a number of other geometrical problems and theoretical mathematical propositions posed by Yang that were strikingly similar to the Euclidean system.Needham, Volume 3, 105. However, the first books of Euclid to be translated into Chinese was by the cooperative effort of the Italian Jesuit Matteo Ricci and the Ming dynasty official Xu Guangqi in the early 17th century.Needham, Volume 3, 106.
Yang's writing represents the first in which quadratic equations with negative coefficients of 'x' appear, although he attributes this to the earlier Liu Yi.Needham, Volume 3, 46. Yang was also well known for his ability to manipulate decimal fractions. When he wished to multiply the figures in a rectangular field with a breadth of 24 paces 3 4⁄10 ft. and length of 36 paces 2 8⁄10, Yang expressed them in decimal parts of the pace, as 24.68 X 36.56 = 902.3008.Needham, Volume 3, 45.
|
|